public class PseudoOptDecorator extends PBSolverDecorator implements IOptimizationProblem
Constructor and Description |
---|
PseudoOptDecorator(IPBSolver solver)
Create a PB decorator for which a non optimal solution means that the
problem is satisfiable.
|
PseudoOptDecorator(IPBSolver solver,
boolean nonOptimalMeansSatisfiable)
Create a PB decorator with a specific semantic of non optimal solution.
|
PseudoOptDecorator(IPBSolver solver,
boolean nonOptimalMeansSatisfiable,
boolean useAnImplicantForEvaluation)
Create a PB decorator with a specific semantic of non optimal solution.
|
Modifier and Type | Method and Description |
---|---|
boolean |
admitABetterSolution()
Look for a solution of the optimization problem.
|
boolean |
admitABetterSolution(IVecInt assumps)
Look for a solution of the optimization problem when some literals are
satisfied.
|
Number |
calculateObjective()
Compute the value of the objective function for the current solution.
|
void |
discard()
Discard the current solution in the optimization problem.
|
void |
discardCurrentSolution()
Discard the current solution in the optimization problem.
|
void |
forceObjectiveValueTo(Number forcedValue)
Force the value of the objective function.
|
Number |
getObjectiveValue()
Read only access to the value of the objective function for the current
solution.
|
boolean |
hasNoObjectiveFunction()
If the optimization problem has no objective function, then it is a
simple decision problem.
|
boolean |
isOptimal()
Allows to check afterwards if the solution provided by the solver is
optimal or not.
|
boolean |
isSatisfiable()
Check the satisfiability of the set of constraints contained inside the
solver.
|
boolean |
isSatisfiable(boolean global)
Check the satisfiability of the set of constraints contained inside the
solver.
|
boolean |
isSatisfiable(IVecInt assumps)
Check the satisfiability of the set of constraints contained inside the
solver.
|
boolean |
isSatisfiable(IVecInt assumps,
boolean global)
Check the satisfiability of the set of constraints contained inside the
solver.
|
int[] |
model()
Provide a model (if any) for a satisfiable formula.
|
boolean |
model(int var)
Provide the truth value of a specific variable in the model.
|
int[] |
modelWithInternalVariables()
That method is designed to be used to retrieve the real model of the
current set of constraints, i.e. to provide the truth value of boolean
variables used internally in the solver (for encoding purposes for
instance).
|
boolean |
nonOptimalMeansSatisfiable()
A suboptimal solution has different meaning depending of the optimization
problem considered.
|
void |
reset()
Clean up the internal state of the solver.
|
void |
setObjectiveFunction(ObjectiveFunction objf)
Provide an objective function to the solver.
|
void |
setTimeout(int t)
To set the internal timeout of the solver.
|
void |
setTimeoutForFindingBetterSolution(int seconds)
Allow to set a specific timeout when the solver is in optimization mode.
|
String |
toString(String prefix)
Display a textual representation of the solver configuration.
|
addAtLeast, addAtLeast, addAtMost, addAtMost, addExactly, addExactly, addPseudoBoolean, getObjectiveFunction
addAllClauses, addAtLeast, addAtMost, addBlockingClause, addClause, addExactly, clearDecorated, clearLearntClauses, decorated, expireTimeout, findModel, findModel, getLogPrefix, getSearchListener, getSolvingEngine, getStat, getTimeout, getTimeoutMs, isDBSimplificationAllowed, isSolverKeptHot, isVerbose, nConstraints, newVar, newVar, nextFreeVarId, nVars, primeImplicant, primeImplicant, printInfos, printInfos, printStat, printStat, printStat, realNumberOfVariables, registerLiteral, removeConstr, removeSubsumedConstr, setDBSimplificationAllowed, setExpectedNumberOfClauses, setKeepSolverHot, setLogPrefix, setSearchListener, setTimeoutMs, setTimeoutOnConflicts, setVerbose, toString, unsatExplanation
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
findModel, findModel, nConstraints, newVar, nVars, primeImplicant, primeImplicant, printInfos, printInfos
addAllClauses, addAtLeast, addAtMost, addBlockingClause, addClause, addExactly, clearLearntClauses, expireTimeout, getLogPrefix, getSearchListener, getSolvingEngine, getStat, getTimeout, getTimeoutMs, isDBSimplificationAllowed, isSolverKeptHot, isVerbose, newVar, nextFreeVarId, printStat, printStat, printStat, realNumberOfVariables, registerLiteral, removeConstr, removeSubsumedConstr, setDBSimplificationAllowed, setExpectedNumberOfClauses, setKeepSolverHot, setLogPrefix, setSearchListener, setTimeoutMs, setTimeoutOnConflicts, setVerbose, unsatExplanation
public PseudoOptDecorator(IPBSolver solver)
solver
- a PB solver.public PseudoOptDecorator(IPBSolver solver, boolean nonOptimalMeansSatisfiable)
solver
- a PB solvernonOptimalMeansSatisfiable
- true if a suboptimal solution means that the problem is
satisfiable (e.g. as in the PB competition), else false (e.g.
as in the MAXSAT competition).public PseudoOptDecorator(IPBSolver solver, boolean nonOptimalMeansSatisfiable, boolean useAnImplicantForEvaluation)
solver
- a PB solvernonOptimalMeansSatisfiable
- true if a suboptimal solution means that the problem is
satisfiable (e.g. as in the PB competition), else false (e.g.
as in the MAXSAT competition).useAnImplicantForEvaluation
- uses an implicant (a prime implicant computed using
SolverDecorator.primeImplicant()
) instead of a plain model to
evaluate the objective function.public boolean isSatisfiable() throws TimeoutException
IProblem
isSatisfiable
in interface IProblem
isSatisfiable
in class SolverDecorator<IPBSolver>
TimeoutException
public boolean isSatisfiable(boolean global) throws TimeoutException
IProblem
isSatisfiable
in interface IProblem
isSatisfiable
in class SolverDecorator<IPBSolver>
global
- whether that call is part of a global process (i.e.
optimization) or not. if (global), the timeout will not be
reset between each call.TimeoutException
public boolean isSatisfiable(IVecInt assumps, boolean global) throws TimeoutException
IProblem
isSatisfiable
in interface IProblem
isSatisfiable
in class SolverDecorator<IPBSolver>
assumps
- a set of literals (represented by usual non null integers in
Dimacs format).global
- whether that call is part of a global process (i.e.
optimization) or not. if (global), the timeout will not be
reset between each call.TimeoutException
public boolean isSatisfiable(IVecInt assumps) throws TimeoutException
IProblem
isSatisfiable
in interface IProblem
isSatisfiable
in class SolverDecorator<IPBSolver>
assumps
- a set of literals (represented by usual non null integers in
Dimacs format).TimeoutException
public void setObjectiveFunction(ObjectiveFunction objf)
IPBSolver
setObjectiveFunction
in interface IPBSolver
setObjectiveFunction
in class PBSolverDecorator
objf
- the objective functionpublic boolean admitABetterSolution() throws TimeoutException
IOptimizationProblem
admitABetterSolution
in interface IOptimizationProblem
TimeoutException
- if the solver cannot answer in reasonable time.ISolver.setTimeout(int)
public boolean admitABetterSolution(IVecInt assumps) throws TimeoutException
IOptimizationProblem
admitABetterSolution
in interface IOptimizationProblem
assumps
- a set of literals in Dimacs format.TimeoutException
- if the solver cannot answer in reasonable time.ISolver.setTimeout(int)
public boolean hasNoObjectiveFunction()
IOptimizationProblem
hasNoObjectiveFunction
in interface IOptimizationProblem
public boolean nonOptimalMeansSatisfiable()
IOptimizationProblem
nonOptimalMeansSatisfiable
in interface IOptimizationProblem
public Number calculateObjective()
IOptimizationProblem
calculateObjective
in interface IOptimizationProblem
IOptimizationProblem.getObjectiveValue()
public void discardCurrentSolution() throws ContradictionException
IOptimizationProblem
discardCurrentSolution
in interface IOptimizationProblem
ContradictionException
- if a trivial inconsistency is detected.public void reset()
ISolver
reset
in interface ISolver
reset
in class SolverDecorator<IPBSolver>
public int[] model()
IProblem
model
in interface IProblem
model
in class SolverDecorator<IPBSolver>
IProblem.isSatisfiable()
,
IProblem.isSatisfiable(IVecInt)
public boolean model(int var)
RandomAccessModel
model
in interface RandomAccessModel
model
in class SolverDecorator<IPBSolver>
var
- the variable id in Dimacs format#model()
public String toString(String prefix)
ISolver
toString
in interface ISolver
toString
in class SolverDecorator<IPBSolver>
prefix
- the prefix to use on each line.public Number getObjectiveValue()
IOptimizationProblem
getObjectiveValue
in interface IOptimizationProblem
public void discard() throws ContradictionException
IOptimizationProblem
discard
in interface IOptimizationProblem
ContradictionException
- if a trivial inconsistency is detected.IOptimizationProblem.discardCurrentSolution()
public void forceObjectiveValueTo(Number forcedValue) throws ContradictionException
IOptimizationProblem
forceObjectiveValueTo
in interface IOptimizationProblem
ContradictionException
public boolean isOptimal()
IOptimizationProblem
isOptimal
in interface IOptimizationProblem
public int[] modelWithInternalVariables()
ISolver
modelWithInternalVariables
in interface ISolver
modelWithInternalVariables
in class SolverDecorator<IPBSolver>
IProblem.model()
,
ModelIterator
public void setTimeoutForFindingBetterSolution(int seconds)
IOptimizationProblem
setTimeoutForFindingBetterSolution
in interface IOptimizationProblem
public void setTimeout(int t)
ISolver
setTimeout
in interface ISolver
setTimeout
in class SolverDecorator<IPBSolver>
t
- the timeout (in s)Copyright © 2013 Centre de Recherche en Informatique de Lens (CRIL). All Rights Reserved.